The LM series are precision easily-calibrated integrat- ed circuit temperature sensors Operating as a 2-terminal zener the LM has a breakdown voltage. lm are available at Mouser Electronics. Mouser offers inventory, pricing, & datasheets for lm Data sheet, LM manual, LM pdf, LM, datenblatt, Electronics LM, alldatasheet, free, datasheet, Datasheets, data sheet, datas sheets, databook.

Author: Felkis Molkis
Country: Niger
Language: English (Spanish)
Genre: Science
Published (Last): 7 December 2018
Pages: 150
PDF File Size: 18.35 Mb
ePub File Size: 2.32 Mb
ISBN: 185-3-27307-818-4
Downloads: 43914
Price: Free* [*Free Regsitration Required]
Uploader: Kik

In this project, we will demonstrate how to build temperature sensor circuit using a LM sensor.

LM Datasheet, PDF – Alldatasheet

As a temperature sensor, the circuit will read the temperature of the surrounding environment and relay datashret temperature to us back in degrees Kelvin. The difference between an LM and LM34 and LM35 temperature sensors is the LM sensor gives out the temperature in degrees Kelvin, while the LM35 sensor gives out the temperature in degrees Celsius and the LM34 sensor lm35 out the temperature in degrees Fahrenheit. All 3 are calibrated different to output the millivolt voltage reading in proportional to these different units of measurement.

So if the LM is giving an output reading of 2. All you have to do is take the output reading and divide it by 10 in order to get the temperature output reading. This output reading of We will integrate this with the arduino to measure the temperature. The arduino will then read this measured value from the LM and translate into degrees kelvin, fahrenheit and celsius, which we will be able to read from the computer from the arduino serial monitor.


National Semiconductor

We can use any type of arduino board. This is ideal because the arduino’s power pin gives out 5V of power. The IC has just 3 pins, 2 for the power supply and one for the analog output. The output pin provides an analog voltage output that is linearly proportional to the fahrenheit temperature. Pin 2 gives an output of 1 millivolt per 0.

So to get the degree value in fahrenheit, all that must be done is to take the voltage output and divide it by this give out the value degrees in fahrenheit. So, for example, if the output pin, pin 2, gives out a value of mV 0. Dagasheet can then easily convert this value into fahrehnheit and celsius by plugging in the appropriate conversion equations.

LM35 Temperature Sensor

All we must datasgeet is write this code and upload it to the arduino to convert this kelvin temperature into fahrenheit and celsius. The code is shown below. Below is the pinout of the LM IC: Pin 1 is the Adjustable Pin Adj. This allows us to calibrate the temperature sensor if we want a more precise temperature readout.

Pin 2 is the output pin. We attach this pin to analog pin A0 of the arduino board. datasheett

Pin 3 is the ground pin and datwsheet to the ground GND terminal of the arduino. This is the datasheet of the LM IC: The arduino, with suitable code, can then interpret this measured analog voltage and output to us the temperature in degrees Kelvin, Celsius, and Fahrenheit.

This is datashet that we can hook our arduino to a computer and send it code that it can run to display to us dtaasheet temperature. Temperature Sensor Circuit The temperature sensor circuit we will build is shown below: This translates into the circuit schematic: So you circuit connections are: The type B side of the connector goes into the arduino and the type A side into the USB port of the computer.


Now the computer is connected to the arduino. We can now write code in the processing software to give instructions to the arduino.

Before we can get a Kevlin reading of the temperature, the analog output voltage must first be read. This will be the raw om355 divided by times It is divided by because a span of occupies 5V. We get the ratio of the raw value to the full span of and then multiply it by to get the millivolt value.

Since the output pin can give out a maximum of 5 voltsrepresents the full possible range it can give out. The raw voltage over this value therefore represents the ratio of how much power the output pin is outputting against this full range.

Once we have this ratio, we then multiply it by to give the millivolt value. This is because there is millvolts in 5 volts. Once this analog voltage in millivolts is calculated, we then can find the temperature in kelvin l,355 the equation: Once we obtain this Celsius value, we can convert into Fahrenheit with the following equation: You can adjust this value to meet your personal preference or program needs.